# SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction [Project page](https://markomih.github.io/SplatFields/) | [Paper](https://arxiv.org/pdf/XXX.XXX) <br>  This repo contains the official implementation for the paper "SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction". SplatFields regularizes 3D Gaussian Splatting (3DGS) by predicting the splat features and locations via neural fields to improve the reconstruction under unconstrained sparse views. Our approach effectively handles static and dynamic scenes. ## Installation We tested on a server configured with Ubuntu 18.04, cuda 11.6 and gcc 9.4.0. Other similar configurations should also work, but we have not verified each one individually. ### 1. Clone this repo: ```bash git clone https://github.com/markomih/SplatFields.git cd SplatFields ``` ### 2. Install dependencies ```bash conda env create --file environment.yml conda activate SplatFields # install 3DGS renderer pip3 install -e git+https://github.com/ingra14m/depth-diff-gaussian-rasterization@f2d8fa9921ea9a6cb9ac1c33a34ebd1b11510657#egg=diff_gaussian_rasterization pip3 install -e git+https://gitlab.inria.fr/bkerbl/simple-knn.git@44f764299fa305faf6ec5ebd99939e0508331503#egg=simple_knn pip3 install -e git+https://github.com/open-mmlab/mmgeneration@f6551e1d6ca24121d1f0a954c3b3ac15de6d302e#egg=mmgen ``` ## Static Reconstruction ### Blender Dataset ### DTU Dataset ## Dynamic Reconstruction ### Owlii Dataset ## Citation If you find our work helpful, please consider citing: ```bibtex @inproceedings{SplatFields, title={{SplatFields}: SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction}, author={Mihajlovic, Marko and Prokudin, Sergey and Tang, Siyu and Maier, Robert and Bogo, Federica and Tung, Tony and Boyer, Edmond}, booktitle={European Conference on Computer Vision (ECCV)}, year={2024}, organization={Springer} } ``` ## LICENSE The code released under this repo is under MIT license, however the origianl 3DGS renderer that is utilized has a more restrictive [LICENSE](https://github.com/graphdeco-inria/gaussian-splatting).