La concurrence
en Python

Introduction

Les bases

Application du multithreading

(téléchargement d’images sur le Web)

INTRODUCTION
a la concurrence
en Python

Gestion de la concurrence :

différents mécanismes de synchronisation

Limites des threads en Python

Probleme du GIL (Global Interpreter Lock)

APPLICATION du multithreading

Téléechargement d'images sur le web

j Téléchargement multithreadé d’images D

tp2_application_sequentiallmageDownloading.py tp2_application_concurrentimageDownloading.py
import urllib.request import urllib.reguest
import time import time
def downloadImage (imagePath, fileName): def downlcocadImage (imagePath, fileName) :
print ("Downloading Image from ", imagePath) print ("Downloading Image from ", imagePath)
urllib.request.urlretrieve (ilmagePath, fileName) urllib.request.urlretrieve (imagePath, fileName)
séquentiel multithreadé
def main{} - def main{} =
= time.time () = time.time ()

fDI‘ i in range(10): for i in range (10):

thread-thre ading.Thread (target=executeThread,
threads.appen
threadlstart {

tl = time.time ()} = time.time ()

totalTime = t1 - t0 tDtalTlIl'I.E = t1 - t0

print ("Total Execution Time {}".format (totalTime)}) print ("Total Execution Time {}™.format (totalTime}}
if name == ' main ': if name == ' main ':

main () main ()

Gestion de |la concurrence :
differents mécanismes de synchronisation

Synchronisation : join()

import threading
import time

def ourThread(i):
print("Thread {} Started".format(i))
time.sleep(i*2)
print("Thread {} Finished".format(i))

def main() :
thread = threading.Thread(target=curThread, args=(1l,))
thread.start ()

print("Is thread 1 Finished?")

threadZ = threading.Thread(target=ourThread, args=(Z,))
thread2.start ()
threadZ.join()

print ("Thread 2 definitely finished")

1f name — ' main Fa

main ()

B

tp2_02_threadJoin.py

Lock Object - Thread Synchronization in Python

In multithreading when multiple threads are working simultaneously on a shared resource like a file(reading and writing
data into a file), then to avoid concurrent modification error(multiple threads accessing same resource leading to
inconsistent data) some sort of locking mechanism is used where in when one thread is accessing a resource it takes a

lock on that resource and until it releases that lock no other thread can access the same resource.

Lock Object: Python Multithreading

In the threading module of Python, for efficient multithreading a primitive lock is used. This lock helps us in the

synchronization of two or more threads. Lock class perhaps provides the simplest synchronization primitive in Python.

Primitive lock can have two States: locked or unlocked and is initially created in unlocked state when we initialize the

Lock object. It has two basic methods, acquire() and release().

Following is the basic syntax for creating a Lock object:

import threading

threading.Lock()

tp2_03_lockExample_empty.py

séquentiel

Verrou : Lock

import threading import threading
import time import time
import random import random
counter = 1 counter = 1
def workerA(): def workeraA():
global counter global counter
try: try:
while counter < 1000: while counter < 1000:
counter += 1 counter += 1
print ("Worker A is incrementing counter to {}".format (counter)) print ("Worker A is incrementing counter to {}".format (counter))
finally: finally:
def workerB(): def workerB():
global counter global counter
try: try:
while counter > -1000: while counter > -1000:
counter -= 1 counter -= 1
print ("Worker B is decrementing counter to {}".format (counter)) print ("Worker B is decrementing counter to {}".format (counter))
finally: finally:
def main(): def main():
t0 = time.time () t0 = time.time ()
threadl = threading.Thread (target=workerd) threadl = threading.Thread (target=workerd)
thread? = threading.Thread (target=workerB) thread? = threading.Thread (target=workerB)
threadl.start(” threadl.start ()
thread2.start () thread2.start ()
threadl.join() threadl.join()
thread?2.join() thread?2.join()
tl = time.time () tl = time.time ()
print ("Execution Time {}".format (tl-t0)}) print ("Execution Time {}".format (tl-t0))
if name == "' main ': if name == "'_ main ':

main () main ()

tp2_03 lockExample.py

multithreadé

Verrou : RLock

RLock Object: Python Multithreading

An RLock stands for a re-entrant lock. A re-entrant lock can be acquired multiple times by the same thread.

Comme Lock, mais on peut appeler plusieurs fois acquire() [alors que sinon ca crée une erreur].
Tres utile quand on veut mettre des verrous a I'intérieur de fonctions différentes,
elles-mémes appelées par une fonction (appels en cascade) [voir example page suivante].

Verrou : Rlock (Reentrant Lock)

tp2_04_rlocks_empty.py tp2_04 rlocks.py

multithreadé

import threading
import time

import threading
import time

class myWorker () : class myWorker () :

def init (self): def init (self):
self.a = 1 self.a = 1
self.b = 2 self.b = 2

def modifya (self): def modifyA (self):

print ("Modifying A : RLock Acgquired: {}".format (self.rlock. is owned()}) print ("Modifying A : RLock Acquired: {}".format(self.rlock. is owned()}))
print ("{}".format (self.rlock}} print{"{}".format (self.rlock}}
self.a = self.a + 1 self.a = self.a + 1

time.sleep (5) time.sleep (5}

def modifyB (self): def modifyB (self):
print ("Modifying B : RLock Acquired: {}".format (self.rlock. is owned()}) print ("Modifying B : RLock Acquired: {}".format (self.rlock. is owned()))
print ("{}".format (self.rlock}} print (" {}".format (self.rlock}}
self.b = self.b - 1 self.b = self.b - 1

time.sleep (5) time.sleep(5)

def modifyBoth (self): def modifyBoth (self):

print ("Rlock acquired, modifying A and B") print ("Rlock acquired, modifying A and B")

print{"{}".format {self.rlock)) print (" {}".format {self.rlock)}
self . modifya () self . modifya ()
print ("{}".format (self.rlock)) print("{}".format {self.rlock)}
self.modifyB ()} self . .modifyB ()}
print ("{}".format (self.rlock)) print ("{}".format (self.rlock))
workerA = myWorker () workerA = myWorker ()

workerA . modifyBoth () workerA .modifyBoth ()

Sémaphore : Semaphore

Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early
Dutch computer scientist Edsger W. Dijkstra (he used the names P() and v() instead of acquire() and

release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented by
each release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks, wai-
ting until some other thread calls release().

Sémaphore : Semaphore

Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example, a database server. In any si-
tuation where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any wor-

ker threads, your main thread would initialize the semaphore:

maxconnections = 5

Wi e
pool sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore's acquire and release methods when they need to connect to
the server:

with pool sema:
conn = connectdb()
try:
... use connection ...
finally:
conn.close()

The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to
be released more than it's acquired will go undetected.

Sémaphore :

tp2_06_semaphores_empty.py

import threading
import time
import random

séquentiel

class TicketSeller (threading.Thread) :
ticketsSold = 0

threading.Thread. init (self) ;

print ("Ticket Seller Started Work™)

def run(self):
global ticketsAvailable
running = True
while running:
self.randomDelay ()

if (ticketsAvailable <= 0} :
running = False

else:
self.ticketsSold = self.ticketsSold + 1
ticketsAvailable = ticketshAvailable - 1

print("{} Sold One ({} left)".format (self.getName (), ticketshvailable))

print ("Ticket Seller {} 5o0ld {} tickets in total".format (self.getName (), self.ticketsS5old))
def randomDelay(self):
time.sleep (random.randint (0,4)/4)

our sempahore primitive
Our Ticket Allocation
ticketsAvailable = 200

our array of sellers

sellers = []

for i in range(4):
seller.start ()
sellers.append (seller)

joining all our sellers
for seller in sellers:
seller.join()

Semaphore

tp2_06_semaphores.py

multithreadé

import threading
import time
import random

class TicketSeller (threading.Thread) :
ticketsSold = 0

threading.Thread. init (self);

print ("Ticket Seller Started Work"™)

def run(self):
global ticketsAwvailable
running = True
while running:
self.randomDelav ()}

if(ticketsAvailable <= 0} :

running = False

else:
self.ticketsS5o0ld = self.ticketsSold + 1
ticketsAvailable = ticketsiwvailable - 1

print ("{} Sold One ({} left)".format (self.getName (), ticketsiAwvailable))

print ("Ticket Seller {} Sold {} tickets in total™.format (self.getName (), self.ticketsSold)}
def randomDelay (self):
time.sleep (random.randint (0,4)/4)

our sempahore primitive
Our Ticket Allocation
ticketsAvailable = 200

our array of sellers
sellers = []
for i in range(4):

seller.start ()
sellers.append(seller)

joining all our sellers
for seller in sellers:
seller.join ()}

Sémaphore : BoundedSemaphore

tp2_06_semaphores.py

import threading mUItithreadé
import time
import random

class TicketSeller (threading.Thread) :
ticketsS5o0ld = 0

def init (self, semaphore):
threading.Thread. init (self):
self.sem = semaphore
print ("Ticket Seller Started Work™)

def run(self):
global ticketsAwvailable
running = True
while running:
self. randomDelay ()

self.sem.acquire |
if(ticketsAvailable <= 0):
running = False

import threading
import time
import random

class TicketSeller (threading.Thread) :
ticketsS5old = 0

def init (self, semaphore):
threading.Thread. init (self);
self.sem = semaphore
print ("Ticket Seller Started Work™)

def run(self):
global ticketsAvailable
running = Truﬂ
while running:
self.randomDelay ()

self.sem.acqguire ()
if(ticketsAvailable <= 0):
running = False

multithreadé

tp2_07_boundedSemaphores.py

else: else:
gelf.ticketsS5o0ld = self.ticketsSold + 1 self.ticketsS5o0ld = self.ticketsSold + 1
ticketsAvailable = ticketsAvailable - 1 ticketsaAvailable = ticketsiAvailable - 1
print ("{} S50l1ld One ({} left)".format (self.gecMame (), ticketshvailable)) print("{} Sold Cne ({} left)".format (self.getWame (), ticketsihwvailable)
self.sem.release () self.sem.release ()
print ("Ticket Seller {} Sold {} tickets in total".format (self.getName (), self.ticketsS5Sold)) print ("Ticket Seller {} Sold {} tickets in total"™.format (self.getName (), self.ticketsSold})
def randomDelay (self): def randomDelay (self):
time.=sleep (random.randint (0,4) /4) time.sleep (random.randint (0,4)/4)
our sempahore primitive # our sempahore primitive
semaphore = threading.Semaphore () semaphore = fhreading.BoundeﬁSemaphore[z)
Our Ticket Allocation # Our Ticket Allocation
ticketsAvailable = 200 ticketsAvailable = 200
our array of sellers # our array of sellers
sellers = [] sellers = []
for i in range{4): for i in range (4):
seller = TicketSeller (semaphore) seller = TicketSeller (semaphore)
seller.start () seller.start ()
sellers.append(seller) sellers.append(seller)
joining all our sellers # joining all our sellers
for seller in sellers: for seller in sellers:

seller.join() seller.join()

Condition : Condition

Condition Object - Thread Synchronization in Python

In order to synchronize the access to any resources more efficiently, we can associate a condition with tasks, for any
thread to wait until a certain condition is met or notify other threads about the condition being fulfilled so that they may

unblock themselves.

Let's take a simple example to understand this. In the Producer Consumer problem, if there is one Produces producing
some item and one Consumer consuming it, then until the Producer has produced the item the Consumer cannot
consume it. Hence the Consumer waits until the Produced produces an item. And it's the duty of the Producer to inform

the Consumer that an item is available for consumption once it is successfully produced.

And if there are multiple Consumers consuming the item produced by the Producer then the Producer must inform all

the Consumers about the new item produced.

This is a perfect usecase for the condition object in multithreading in python.

Condition : Condition

Example:

Producteur / Consommateur

class Publisher (threading. Thread) @

séquentiel

def runi=self):
while True:
integer = random.zandint (0, 1000)

print ("Condition Acquired by Publisher: [}".formati{self name])
self integers. append | integer)
print ("Publisher [} appending to array: [}".fcrmat({=zelf name, inbeger)]

print ("Condition Beleased by Publisher: [}".fcmmati{zelf.name])

time.sleepil)

class Subscriber (threading.Thoead) :

self. integers = integers

threading.Thread. init (self)

def run(=self):
while Tzue:

print {"Condition Acquired by Consumer: []17.format(self.name))
while Trume:
if self. integers:
integer = self. integers. popi]
prirt({"[} Popped from list by Consumer: [}7.format(integer, self. name))
braak
prirt ("Condition Wait by []}".format(self.name))

print { "Consumer [} Beleasing Condition” . format (self. mame]))

def maini):
integers = []

§ Cur Publisher

publ . =tazt()

§ Cur Subscribers

isher | ing_Thread) -
multithreadé

self integers = integers
threading . Thread. init (=self)

def runi=self):
while True:

integer = random.zandint (), 1000)
print ("Condition Acquired by Publisher: [}".formati{self. name])
self integers. append { integer)
print ("Publisher [} appending to array: [}7.formati{=zelf name, inbeger)]
print ("Condition Peleased by Publisher: [}17.focrmati{zelf.name])
time.sleepil)

class Subscriber (threading.Thread) :

self. integers = integers
threading.Thread. init (self)

def run(=elf)
while Tzue:
prict ("Condition Acquired by Consumer: [}"7.format(self.name))
while True:
if self. integers:
integer = self. integers. popi)
prirt("[} Popped from list by Consumer: [}17.format(integer, =self. name))
braak
prirt {"Condition Wait by [}".formati{self name))

print ("Consumer [} Beleasing Condition” . format (self mame))
def maini):
integers = []
Cur Publisher

publ . =tazt()

§ Cur Subscribers

subl _starti)
subd_starti)

Joining ocur Threads
publ . join(]
consumerl.joini)
consmmer? . joim(]

tp2_09_pubSub_empty.py

subl starti)
subd_ starti]

Joining ocur Threads
publ_join(]
consumerl.joini)
consmmer? join(]

tp2_09_pubSub.py

Evénement : Event

Python Multithreading: Event Object

The Event class object provides a simple mechanism which is used for communication between threads where one thread

signals an event while the other threads wait for it. So, when one thread which is intended to produce the signal

produces it, then the waiting thread gets activated.

An internal flag is used by the event object known as the event flag which can be set as true using the set() method

and it can be reset to false using the clear() method.

The wait() method blocks a thread until the event flag for which it is waiting is set true by any other thread..

_'1 Evénement : Event j

tp2_10_events_empty.py tp2_10_events.py
import threading import threading
import time import time
print ("Waiting for Event to be set") print ("Waiting for Event to be set")
tlme.sleep(l} tlme.sleep(l}
print ("myEvent has been set™) print ("myEvent has been set")
def main() : def main() :
threadl.start () threadl.start ()
time.sleep (10) time.sleep (10)

Barriere : Barrier

Barrier Object - Python Multithreading

Barrier object is created by using Barrier class which is available in the threading module. This object can be used where

we want a set of threads to wait for each other.

For example, if we have two threads and we want both the threads to execute when both are ready. In such situation

both the threads will call the wait() method on the barrier object once they are ready and both the threads will be

released simultaneously only when both of them have called the wait() method.

j Barriere : Barrier —l,]

tp2_11_barriers_empty.py Barrier : bloque tous les threads qui appellent wait(). tp2_11_barriers.py
Permet de synchroniser des threads a des endroits précis,
a l'intérieur de la méthode run().
join() attend la fin de la méthode run().

import threading Séquentiel import threading multithreadé

import time import time
import random import random
class myThread (threading. Thread) : c¢lass myThread (threading.Thread) :
threading.Thread. init (self) threading.Thread. init__ (self)
def run(self): def run(self):
print ("Thread {} working on something”.format (threading.current_thread())) print ("Thread {} working on scmething”.format (threading.current_thread()))
time.sleep (random.randint (1,10})} time.sleep (random.randint (1,10})

print ("Thread {} is joining {} waiting on Barrier™.format { print ("Thread {} is joining {} waiting on Barrier".format(

print ("Barrier has been lifted, continuing with work"™)

print ("Barrier has been lifted, continuing with work")

threads = []

threads = []

for i in range(4):

thread.start () thread.start ()
threads.append (thread) threads.append (thread)

for i in range(4):

n_waiting: number of threads

for t in threads: for t in threads:
t.join{} t-join{}

currently waiting in the barrier

Limites des threads en Python

Probleme du GIL (Global Interpreter Lock)

Probleme du GIL en Python

The Python Global Interpreter Lock or GIL, in simple words, is a mutex (or a lock)
that allows only one thread to hold the control of the Python interpreter.

This means that only one thread can be in a state of execution at any pointin
time. The impact of the GIL isn’t visible to developers who execute single-
threaded programs, but it can be a performance bottleneck in CPU-bound and
multi-threaded code.

Since the GIL allows only one thread to execute at a time even in a multi-threaded

architecture with more than one CPU core, the GIL has gained a reputation as an
“infamous” feature of Python.

Probleme du GIL en Python

Impact sur les programmes multithreadés en Python

When you look at a typical Python program—or any computer program for that
matter—there’s a difference between those that are CPU-bound in their
performance and those that are I/O-bound.

CPU-bound programs are those that are pushing the CPU to its limit. This
includes programs that do mathematical computations like matrix
multiplications, searching, image processing, etc.

|/O-bound programs are the ones that spend time waiting for Input/Output which
can come from a user, file, database, network, etc. I/0-bound programs
sometimes have to wait for a significant amount of time till they get what they
need from the source due to the fact that the source may need to do its own
processing before the input/output is ready, for example, a user thinking about
what to enter into an input prompt or a database query running in its own
process.

Probleme du GIL en Python

How to Deal With Python’s GIL

If the GIL is causing you problems, here a few approaches you can try: Le module multiprocessing
permet au développeur

Multi-processing vs multi-threading: The most popular way is to use a multi-processing d'exploiter au mieux tous

approach where you use multiple processes instead of threads. Each Python process gets its les processeurs d'une

own Python interpreter and memory space so the GIL won’t be a problem. Python has a machine.

multiprocessing module which lets us create processes easily like this:

Multi-Threading en Python

Multi-Processing en Python
Good for I/0 bounded applications Good for CPU bounded applications
Ex : downloading images (web request), Ex : mathematical computations (matrix, image processing,...)
file access, ...

from multiprocessing import Process
import time

import threading

import time API tres proche
def myWorker():
def myChildThread(): tl = time.time ()
print("Child Thread Starting™) print("Process started at: {}".format(tl))
time.sleep(5) time.sleep(20)
child = threading.Thread (target=myChildThread) myProcess = Process(target=myWorker)
print("Process {}".format (myProcess))

child.start()
myProcess.start ()

La concurrence
en Python

On peut faire bien plus avec les threads et la concurrence en Python.

On a juste vu les notions de base.

	La concurrence�en Python
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	La concurrence�en Python

