diff --git a/.RData b/.RData index 4033736f9d99fd6e5d26db52aa9d6a8a595d719a..eb35a777cff0701a41006d04fde53f942093c6d0 100644 Binary files a/.RData and b/.RData differ diff --git a/.Rhistory b/.Rhistory new file mode 100644 index 0000000000000000000000000000000000000000..05c3e466ee3610964a17068071be0393ae032251 --- /dev/null +++ b/.Rhistory @@ -0,0 +1,132 @@ +load("E:\\Documents\\IUT - Semestre 4\\Module - P4a - Performance\\P4a\\.RData") +perfArray +GraphArray <- ggplot(perfArray, aes(x=Taille, y=CPU, color="red")) + geom_point() +library(ggplot2) +GraphArray <- ggplot(perfArray, aes(x=Taille, y=CPU, color="red")) + geom_point() +GraphArray +perfTableau +GraphTableau <- ggplot(perfTableau, aes(x=Taille, y=CPU, color="blue")) + geom_point() +GraphTableau +GraphTableau +GraphTableau <- ggplot(perfTableau, aes(x=Taille, y=CPU, color="green")) + geom_point() +GraphTableau +GraphTableau <- ggplot(perfTableau, aes(x=Taille, y=CPU, color='green')) + geom_point() +GraphTableau +GraphArray +GraphTableau <- ggplot(perfTableau, aes(x=Taille, y=CPU, color='green')) + geom_point(color="green") +GraphTableau +GraphArray <- ggplot(perfArray, aes(x=Taille, y=CPU, color="red")) + geom_point(color="red") +GraphArray +perfLinked +GraphLinked = ggplot(perfLinked, aes(x=Taille, y=CPU, color="blue")) + geom_point(color="blue") +GraphLinked +GraphPerfInitializing <- rbind(GraphArray, GraphTableau, GraphLinked) +GraphPerfInitializing +GraphPerf <- ggplot(GraphPerfInitializing, aes(x=Taille, y=CPU)) + geom_point() +ggplot(GraphPerfInitializing, aes(x=Taille, y=CPU)) + geom_point() +GraphTableau +test<- rbind(perfArray, perfTableau, perfLinked) +GraphTest <- ggplot(test, aes(x=Taille, y=CPU)) + geom_point() +GraphTest +ggplot(perfArray, aes(x=Taille, y=CPU)) + geom_point() + geom_smooth(fill="blue", colour="darkblue", size=1) +warnings() +save.image("E:\\Documents\\IUT - Semestre 4\\Module - P4a - Performance\\P4a\\.RData") +q() +load("E:\\Documents\\IUT - Semestre 4\\Module - P4a - Performance\\P4a\\.RData") +perfArray +Array +graphArray +arrayGraph +GraphArray +GraphArray <- ggplot(perfArray, aes(x=Taille, y=CPU, color="red")) + geom_point(color="red") + geom_smooth() +library(ggplot2) +GraphArray <- ggplot(perfArray, aes(x=Taille, y=CPU, color="red")) + geom_point(color="red") + geom_smooth() +GraphArray <- ggplot(perfArray, aes(x=Taille, y=CPU, color="red")) + geom_point(color="red") + geom_smooth() +GraphArray +warnings() +q() +perf <- read.csv2("perf.csv", sep="\t", dec=".") +perfTableau <- read.csv2("perfTableau.csv", sep="\t", dec=".") +perfTableau <- read.csv2("perfTableau.csv", sep="\t", dec=".") +perfArray <- read.csv2("perfArray.csv", sep="\t", dec=".") +perfLinked <- read.csv2("perfLinked.csv", sep="\t", dec=".") +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,label="Performance Add Tableau")) + geom_smooth(color=blue") +) +" +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,label="Performance Add Tableau")) + geom_smooth(color="blue") +library(ggplot2) +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,label="Performance Add Tableau")) + geom_smooth(color="blue") +graphTableau +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,label="Performance Add Tableau")) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,colour="Performance Add Tableau")) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,colour=Performance Add Tableau)) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,color="Performance Add Tableau")) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,color="red")) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,color=red)) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,color=time)) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau +graphTableau +graphTableau <- ggplot(perfTableau, aes(x=Taille,y=CPU,color=CPU)) + geom_smooth(color="blue") + ggtitle("Evaluation du temps d'éxécution de Add sur un tableau") +graphTableau +graphArray <- ggplot(perfArray, aes(x=Taille,y=CPU,color=CPU)) + geom_smooth(color="red") + ggtitle("Evaluation du temps d'éxécution de Add sur une Array") +graphArray +graphLinked <- ggplot(perfLinked, aes(x=Taille,y=CPU,color=CPU)) + geom_smooth(color="green") + ggtitle("Evaluation du temps d'éxécution de Add sur une LinkedList") +graphLinked +graph <- ggarrange(graphTableau, graphArray, graphLinked, Labels=c("Tableau","Array","Linked"), ncol=2, nrow=2) +library(ggpubr) +install.package(ggpubr) +instal.package(ggpubr) +local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) +if(nchar(pkg)) library(pkg, character.only=TRUE)}) +instal.packages(ggpubr) +install.packages(ggpubr) +if(!require(devtools)) install.packages("devtools") +devtools::install_github("kassambara/ggpubr") +devtools::install_github("kassambara/ggpubr") +install.packages(ggpubr) +local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) +if(nchar(pkg)) library(pkg, character.only=TRUE)}) +library(devtools) +library("devtools") +library("devtools") +local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) +if(nchar(pkg)) library(pkg, character.only=TRUE)}) +local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) +if(nchar(pkg)) library(pkg, character.only=TRUE)}) +print(perfArray) +print(graphArray) +print(graphLinked) +using pushViewport() +pushViewport(viewport(layout = grid.layout(2,2))) +if(!require(devtools)) install.packages("devtools") +devtools::install_github("kassambara/ggpubr") +devtools::install_github("kassambara/ggpubr") +install.packages("ggpubr") +libraryr(ggpubr) +library(ggpubr) +graph <- ggarrange(graphTableau, graphArray, graphLinked, Labels=c("Tableau","Array","Linked"), ncol=2, nrow=2) +graph +save.image("E:\\Documents\\IUT - Semestre 4\\Module - P4a - Performance\\P4a\\.RData") +perf <- read.csv2("perf.csv", sep="\t", dec=".") +perf +perf <- read.csv2("perf.csv", sep="\t", dec=".") +perf +ggplot(perf,aes(y = CPU, x = Taille, colour = Structure, shape =Structure)) +ggplot(perf,aes(y = CPU, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() +ggplot(perf,aes(y = CPU, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() + ggtitle("Evaluation de la performance CPU de la méthode ADD en fonction de la taille") +perfAdd <- read.csv2("perf.csv", sep="\t", dec=".") +GraphAdd <- ggplot(perfAdd,aes(y = CPU, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() + ggtitle("Evaluation de la performance CPU de la méthode ADD en fonction de la taille") +GraphAdd +GraphAddCPU <- ggplot(perfAdd,aes(y = CPU, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() + ggtitle("Evaluation de la performance CPU de la méthode ADD en fonction de la taille") +GraphAddMemoire <- ggplot(perfAdd,aes(y = CPU, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() + ggtitle("Evaluation de la performance mémoire de la méthode ADD en fonction de la taille") +GraphAddMemoire +GraphAddMemoire <- ggplot(perfAdd,aes(y = Memoire, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() + ggtitle("Evaluation de la performance mémoire de la méthode ADD en fonction de la taille") +GraphAddMemoire +GraphAddMemoire <- ggplot(perfAdd,aes(y = Mem, x = Taille, colour = Structure, shape =Structure)) + geom_point() + geom_smooth() + ggtitle("Evaluation de la performance mémoire de la méthode ADD en fonction de la taille") +GraphAddMemoire +save.image("E:\\Documents\\IUT - Semestre 4\\Module - P4a - Performance\\P4a\\.RData") +q() diff --git a/Main.jar b/Main.jar new file mode 100644 index 0000000000000000000000000000000000000000..63e58a1463c803785b52cd04de9e68f8e674af45 Binary files /dev/null and b/Main.jar differ diff --git a/README.md b/README.md index 2ba987f388fed27e3d8191461b31ada74f7c37ad..6e06052f8de74c8c9cdcba17fc96ea340e0f6488 100644 --- a/README.md +++ b/README.md @@ -26,7 +26,7 @@ Contrainte : il faut de l’abstraction, et au moins un tableau ET une liste cha **Organisation du projet** - + ## Dispositif expérimental diff --git a/UML.drawio b/UML.drawio new file mode 100644 index 0000000000000000000000000000000000000000..3014211c3dbdfc22837941f9d70552f3e1a93fc9 --- /dev/null +++ b/UML.drawio @@ -0,0 +1 @@ +<mxfile host="app.diagrams.net" modified="2021-03-09T14:27:15.252Z" agent="5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36" etag="9Kk41M0dOw_UMj_LRa3x" version="14.4.6" type="device"><diagram id="R8-pWj9DbBJSb4AKZ-qf" name="Page-1">7Vxtc9soEP41nul9aEYSkmx/tJ32Xia9yTSdXvuRWMTmKgsPxolzv/5AgN5AtpwIp1O7HzoWWhDafXb3YSEagNlq9zuF6+UnkqB0EHjJbgCuB0EQjiP+v2h4lg0RALJhQXEim/yy4Q7/h1Sjp1q3OEGbmiAjJGV4XW+ckyxDc1Zrg5SSp7rYA0nrT13DhXqiVzbczWGKDLF/cMKWsnUUDMv2PxBeLPWT/Xgs76ygFlYDb5YwIU+VJvBhAGaUECZ/rXYzlArdab3Ifh9b7hYToyhjXTr8GC3/XcJvUfJ5Aq6X7Gvy12r6PpCjPMJ0q15YTZY9aw1Qss0SJAbxBmD6tMQM3a3hXNx94ibnbUu2SvmVz3+q4RBlaNc6T794e44aRFaI0WcuojqMlL4UYHytv6dS/b6vhZYV3cdD1QiVzRfF2KVa+A+lmSO0BAwtzchqRbKfTVcjU1U2RYWu9BSMDEXdMbqdsy1Fhq42T3iVwoxfTR9Ixu7UHaEZmOJFxn/PuRoQ5Q1CSZg75UTdYETocr7EaXIDn8lWvNiGwfkPfTVdEor/48NCrW1+mzIVX4K4JnEneiqbUbThMrfaAn6j6RPc1QRv4IaphjlJU7je4PviNVaQLnA2JYyRlRLqweaF+ZTRi1BZdZDYYvaxM/fwDkeRFOeW3jBKfhSRVCjpAafpjKSEm/k6I7mQNn+KHpjF+CucJGk+GHctnC2+CDBcv/fLlpu84zUoWz4rNYgmShhkUJpJ2CSF9yi9JRvMMBHjUyk7XROcsVxX0XQQXectlM1Ixl8C4txYiJv/CQkIdLPsHq8x7a3tG3cz78iVdX2LdfnrepMkefdnhhhacB9V938biOkCX2JdSH1GK/KIuKCWwzxC7ky5O5Ty/G2RawCJq5cVQGoA53gsyUBSh01owkY08begD2mewZccgSizQKkOmSm30sy7igR4ghm/9svrg3iyJQ9nGANhN4xFsSuQmSn2zZOr79UDbeiZgTYEFi0VSbd/NYWWBAuzBNKkPdG+td5AbElQwSl5CYgMtd3g7AdKbvCGzS7MpCdmUhhVOwywGH5sMXyBmP4tH1viCo81XlrYn18MwIT/f1NpilNhqiIZxYsyxZ9hLnp53pGedxS3sQEkCF3hY3ihru7MG3X0f2fU1VyPSrJZunqFcGb3XyWFNaLBmbp9vxT0EFZG3bASBq7AMjbA8iXX64UeuClcRDZeaFt1uKMHoVm54L5UMAIdG2QQnQWDiWeg4VyCwSscf3w0B7ChwBkHCG0FjgsH6Mm8Ng5wyvKVzhcGB8iDe2v6t4f+c3H2njP/AYRYMr8NIc4yf2gWnyaUwudLdaDP9A9Ah+qAbbvKYfo3y2myOgC1+QsqMClbLrWBfhKHdLujeIENHu54gVk1vPCC3sxr4wU28zrjBbbK4LTq6bNWcrAnO5yL2/fLEA5hxcIQrAcbXDEEc4Vwi+iGZJlIwj/LvkvcWF/7b77vYkuvP5mSAsumXmTd+gSutGSmmdmSO1xL8fFCP19m+HHcMLzlXFkBhtPs5rbtTS0RTMoidO2khLg93/LQQ6XATP5uiuTpyihjnWuuenleOnr3yoqgyBVDvWxeuTOu5Syl1biu+Gnb1lUlN7yT4UHGC+4VZThQMULR1Vo6aRy7qg53fO8NYn/zICLmoSfD+wq9iyvzkBeXv6XoEZPtpnOfBZLj/9YSEpWMnLyWssRFJVfM98B4tXnuk6VonXLCop5fLhnWCtnmG+HNh9WaPetR7wlJEcxqYmcaqftdVRxwcHNRYXVwf+xqVWFuOEqAXRhfP4fjG6fjo6FlPWTdb3S2INJHtQ3KJxsMwtakdSIMVI8rGRIp3DQlzjSUvDxs9LNd6Yz0+ZftSnfWtbC+k+5W+kEL7ctpSEkuHhsnldqYmWZYInJY6ZiIy1pIBI/zPXDvDFIdtzcjZ8VLy5+vKXp8YRr9FBUbTAOEHcNI4Kyo6LdtbVbWWvupRCFYYRRta0Eg1zuXitOrY4l//KboadnHZVPUoXnfnH60bYqq6kbN/+sRYlbEkXqImVXDgQgS+ys0nco4urTyrjGwUcYhHwl9gjR5Z7s35SnGckOQorwaVnvXFJ8zN+q3LnPICToSJt/Zdm9gLtOhYXuUJRPxgQl+dZ8SwVamvEnRGT+Wlx+xeHJujso+JlcPff4mApl35XmBbvkuJK+CYdFwrZmNvHrWVzvMvuWykbr6XrlTdhIXuk+Va+WTyxv0CyQYrkiWfFniTN+qzDx/+i2imGtXcL8KbUKJ/nxGG2niOiNbOkcdCCp/7ALtA87QjhsbUGyYUD1vhV8MWneEo6AxhJy/6lUiyxho5B0YSL6fMVB+mqQipvy2dcLDxk4m8IIG4uWI9t7vG8fw3vvj+izJwwMPgYYPFfp+hVuZlQsetjeDGRhMRol5gOI1HvZSF+nmEQoS2iXuZIC2udqwX1cZd/SUlj/3PjNPae75R6G3d16+Fwf7OhxyLb/e+WR+ZRaNNJ4MqlLxkWNZS+vSvyDpNppQP+DTiTQc+vPyRgSLbH+Xb1tsO/vsjVlg+YX1P44a6rec5Dyt+s1Sh3dlfpvplzGAkf8tJ5lOawBz1fgr4z9s0i/bMaATqj80jwF92DFOjTZOGFWVTxXsys6oinVOseip9NqzwOmRMMUdCRNoMbqNMVGUQoYf65PrTqMivw6g2H8hjSo+eNc2UAuN6ot3hOYBBhfA0yDyroZhVAWSzxfPh6BkXbuWq4Og+/KgR1CGXRe8bajc6TTngeHYiD59ATVuABU0T8J2BSowMtb4KvTG5b9hJ9weS//BMKo9NvT3038QjffJt7F/9wRfM6yTORqPUT072vBNHE1/+KkHRwvHe76R9tqM0FjRgOanGjs7WtNjNTXr2bOCxjr5kGc1P1T603hWaB6zdcmdjqhGVbwx8sJevLFPx+paiDroWGAU+84ca9hgSCBqDNHVsYKmY0XdqFY/WOaX5XeipXj5sW3w4X8=</diagram></mxfile> \ No newline at end of file diff --git a/UML_P4a.png b/UML_P4a.png new file mode 100644 index 0000000000000000000000000000000000000000..e3044cf2999560b4589f74ddd31e32b603b932a9 Binary files /dev/null and b/UML_P4a.png differ diff --git a/perf.csv b/perf.csv index a846d30d720ffa201d9768f3ea57a66230f5e36e..4f86beb8c374edb44b28dab7ebed37a98e2c603b 100644 --- a/perf.csv +++ b/perf.csv @@ -1,27 +1,201 @@ -Tableau -Taille, CPU, Mem -100, 0.03, 27576 -1000, 0.06, 27592 -10000, 0.04, 28100 -100000, 0.06, 30216 -1000000, 0.09, 48400 -10000000, 0.90, 310548 -100000000, 14.26, 2427740 -Array -Taille, CPU, Mem -100, 0.03, 27588 -1000, 0.03, 27632 -10000, 0.03, 28288 -100000, 0.06, 31348 -1000000, 0.14, 59088 -10000000, 1.73, 369432 -100000000, 21.17, 2843616 -Linked -Taille, CPU, Mem -100, 0.03, 27604 -1000, 0.04, 27676 -10000, 0.06, 28336 -100000, 0.06, 32424 -1000000, 0.40, 94300 -10000000, 4.76, 524520 -100000000, 68.70, 4308476 +Structure Test Taille CPU Mem +Tableau 1 11797000 1.31 343900 +Tableau 2 8166000 0.70 233216 +Tableau 3 13790000 1.65 356292 +Tableau 4 11637000 1.34 345296 +Tableau 5 23771000 2.37 689876 +Tableau 6 11941000 1.76 344132 +Tableau 7 713000 0.12 42612 +Tableau 8 4318000 0.40 119112 +Tableau 9 32655000 4.23 875968 +Tableau 10 13708000 1.45 356808 +Tableau 11 14941000 1.68 359964 +Tableau 12 15392000 1.73 389132 +Tableau 13 759000 0.07 43416 +Tableau 14 23614000 2.40 689056 +Tableau 15 10158000 0.85 302888 +Tableau 16 16554000 1.93 445944 +Tableau 17 28786000 2.92 781460 +Tableau 18 25403000 2.76 765952 +Tableau 19 23059000 2.23 682272 +Tableau 20 13667000 1.56 356096 +Tableau 21 7115000 0.45 212516 +Tableau 22 17501000 2.64 480652 +Tableau 23 18640000 2.78 506536 +Tableau 24 257000 0.06 33684 +Tableau 25 5044000 0.40 152680 +Tableau 26 18854000 3.06 509684 +Tableau 27 14979000 1.50 360400 +Tableau 28 9572000 0.68 300576 +Tableau 29 23717000 2.32 685720 +Tableau 30 22982000 1.89 571200 +Tableau 31 22523000 1.85 564612 +Tableau 32 10340000 0.85 303644 +Tableau 33 22902000 1.96 569696 +Tableau 34 28631000 3.04 764548 +Tableau 35 17528000 3.04 480468 +Tableau 36 20195000 3.37 538412 +Tableau 37 15525000 1.73 364192 +Tableau 38 10613000 0.78 304644 +Tableau 39 24075000 3.67 658280 +Tableau 40 14601000 1.62 357228 +Tableau 41 9476000 0.87 299252 +Tableau 42 16182000 1.45 368228 +Tableau 43 5125000 0.46 151040 +Tableau 44 31959000 4.39 844072 +Tableau 45 14531000 1.75 385024 +Tableau 46 19408000 3.14 521208 +Tableau 47 18598000 2.87 503544 +Tableau 48 14159000 1.75 353492 +Tableau 49 21235000 2.07 536552 +Tableau 50 2213000 0.20 96272 +Array 1 10315000 2.67 373540 +Array 2 1286000 0.06 70756 +Array 3 26868000 6.43 925488 +Array 4 1845000 0.26 107172 +Array 5 24806000 4.15 841244 +Array 6 9983000 2.42 371548 +Array 7 12737000 3.07 443156 +Array 8 31557000 7.17 1065296 +Array 9 31490000 7.31 1092564 +Array 10 17012000 3.43 593728 +Array 11 1472000 0.35 96484 +Array 12 7698000 1.39 282748 +Array 13 23331000 4.59 769748 +Array 14 4994000 0.98 214032 +Array 15 30203000 6.42 968600 +Array 16 27670000 4.32 842488 +Array 17 13408000 3.32 452796 +Array 18 7322000 1.51 280932 +Array 19 24355000 5.01 792152 +Array 20 6366000 1.29 280628 +Array 21 10108000 2.14 364604 +Array 22 23009000 4.15 772016 +Array 23 28412000 4.87 907132 +Array 24 5398000 1.07 220844 +Array 25 28364000 6.15 871080 +Array 26 19539000 3.51 594276 +Array 27 29098000 7.85 941600 +Array 28 22299000 6.71 780996 +Array 29 14385000 3.12 508348 +Array 30 20619000 3.43 645844 +Array 31 5565000 0.85 223180 +Array 32 22529000 3.96 769200 +Array 33 16979000 3.51 593924 +Array 34 28921000 4.68 842872 +Array 35 28208000 4.31 842084 +Array 36 12434000 2.51 383216 +Array 37 22912000 4.29 775936 +Array 38 3459000 0.50 154244 +Array 39 10163000 2.39 365056 +Array 40 30438000 6.45 970160 +Array 41 9501000 2.26 364408 +Array 42 5408000 1.01 220584 +Array 43 7486000 1.59 281012 +Array 44 31843000 7.12 1095532 +Array 45 26598000 3.73 842636 +Array 46 19435000 3.34 596964 +Array 47 15321000 3.28 520288 +Array 48 19483000 3.17 597024 +Array 49 15012000 3.00 523032 +Array 50 26206000 4.35 840600 +Linked 1 14278000 7.56 772120 +Linked 2 20522000 10.39 1042584 +Linked 3 7287000 3.95 376932 +Linked 4 696000 0.26 78316 +Linked 5 13809000 8.17 765984 +Linked 6 28957000 17.20 1428072 +Linked 7 23574000 13.75 1158152 +Linked 8 10911000 6.23 661668 +Linked 9 20974000 10.73 1055816 +Linked 10 5826000 2.71 353996 +Linked 11 12058000 6.37 662956 +Linked 12 4735000 2.32 286480 +Linked 13 29197000 16.98 1429412 +Linked 14 15900000 8.64 859316 +Linked 15 24727000 13.39 1160996 +Linked 16 24019000 12.71 1155592 +Linked 17 23074000 13.81 1139456 +Linked 18 4985000 2.07 280620 +Linked 19 11597000 6.79 641480 +Linked 20 6848000 4.62 361460 +Linked 21 20634000 11.95 1057272 +Linked 22 14742000 8.34 742256 +Linked 23 24361000 15.82 1276240 +Linked 24 10553000 6.85 637972 +Linked 25 28159000 18.71 1412356 +Linked 26 11363000 7.25 641320 +Linked 27 18275000 11.68 961572 +Linked 28 15076000 9.90 832720 +Linked 29 937000 0.53 94268 +Linked 30 25853000 16.14 1285976 +Linked 31 14963000 7.84 771352 +Linked 32 25294000 14.92 1300764 +Linked 33 23465000 12.95 1156372 +Linked 34 22955000 14.65 1137660 +Linked 35 27698000 17.06 1417600 +Linked 36 21766000 13.15 1145816 +Linked 37 4058000 2.09 281260 +Linked 38 20027000 12.03 1034644 +Linked 39 13904000 7.70 767256 +Linked 40 17898000 9.32 856000 +Linked 41 8144000 3.81 375672 +Linked 42 20864000 10.79 1053304 +Linked 43 17793000 8.96 869748 +Linked 44 17323000 9.76 863384 +Linked 45 8432000 4.73 460316 +Linked 46 10632000 5.42 547440 +Linked 47 14806000 8.32 753160 +Linked 48 6059000 2.76 347912 +Linked 49 25885000 15.87 1279276 +Linked 50 32566000 20.04 1612876 +Maillon 1 18520000 4.01 686260 +Maillon 2 2410000 1.32 117680 +Maillon 3 15546000 2.89 513916 +Maillon 4 28782000 4.42 838148 +Maillon 5 27312000 4.68 878476 +Maillon 6 29996000 5.45 994392 +Maillon 7 7387000 1.75 297592 +Maillon 8 6622000 1.42 224716 +Maillon 9 30046000 5.50 1018232 +Maillon 10 11692000 2.51 366116 +Maillon 11 4734000 1.35 212068 +Maillon 12 15072000 2.70 499292 +Maillon 13 25509000 4.48 860900 +Maillon 14 9184000 2.31 327332 +Maillon 15 21616000 4.37 742784 +Maillon 16 15828000 2.93 513940 +Maillon 17 17598000 3.59 656176 +Maillon 18 9095000 1.90 282628 +Maillon 19 12353000 2.79 381044 +Maillon 20 706000 0.15 47116 +Maillon 21 12100000 2.20 352948 +Maillon 22 19645000 3.96 638440 +Maillon 23 13976000 3.17 474072 +Maillon 24 25591000 4.51 851680 +Maillon 25 7165000 1.93 294620 +Maillon 26 1678000 0.84 98336 +Maillon 27 5326000 1.56 214796 +Maillon 28 4390000 1.10 169344 +Maillon 29 26082000 4.37 843172 +Maillon 30 2386000 0.87 108892 +Maillon 31 9896000 2.14 353832 +Maillon 32 27561000 4.42 869976 +Maillon 33 10480000 2.18 383432 +Maillon 34 25517000 4.31 863732 +Maillon 35 440000 0.04 40056 +Maillon 36 25887000 4.37 846120 +Maillon 37 31290000 5.54 1015908 +Maillon 38 8979000 1.93 289272 +Maillon 39 21349000 3.23 681984 +Maillon 40 8257000 1.84 279348 +Maillon 41 5320000 1.21 218332 +Maillon 42 26300000 4.57 851036 +Maillon 43 31038000 6.21 1020768 +Maillon 44 4385000 1.54 170384 +Maillon 45 3979000 1.31 160460 +Maillon 46 8843000 1.82 312764 +Maillon 47 931000 0.14 51924 +Maillon 48 31311000 5.70 1025596 +Maillon 49 5685000 1.28 215732 +Maillon 50 6524000 1.51 223644 diff --git a/perf.sh b/perf.sh deleted file mode 100644 index 3cdd250e502869943d74f035d5cf01bbe088a6ac..0000000000000000000000000000000000000000 --- a/perf.sh +++ /dev/null @@ -1,17 +0,0 @@ -##!/usr/bin/env bash - - -NTEST=3 -TAILLES="100 1000 10000 100000 1000000 10000000 100000000" - -echo "Taille, CPU, Mem" - -for taille in $TAILLES -do - for i in `seq $NTEST` - do - res=`time "%U, %M" ./Main $taille > /dev/null` - - echo "$taille, $req" - done -done diff --git a/perf2.sh b/perf2.sh index 714fe91ee610ec8b64b11cd8a309180c0b42ca3c..24c86b9842a4bd9f79c3b8d1386c64f075300946 100644 --- a/perf2.sh +++ b/perf2.sh @@ -1,13 +1,40 @@ #!/usr/bin/env bash +NTEST=50 -TAILLE="1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 10000000 11000000 1200000" -NTEST=20 -echo "Taille, CPU, Mem" +echo -e "Structure\tTest\tTaille\tCPU\tMem" for i in `seq $NTEST` +do + name="Tableau" + taille=${RANDOM}000 + res=`(/usr/bin/time -f "%U\t%M" java -jar Main.jar "Tableau" $taille > /dev/null) 2>&1` + echo -e "$name\t$i\t$taille\t$res" +done + + +for i in `seq $NTEST` +do + name="Array" + taille=${RANDOM}000 + res=`(/usr/bin/time -f "%U\t%M" java -jar Main.jar "Array" $taille > /dev/null) 2>&1` + echo -e "$name\t$i\t$taille\t$res" +done - res=`(/usr/bin/time -f "%U, %M" java -jar Main.jar "Linked" $nombre > /dev/null) 2>&1` - echo "$taille, $res" +for i in `seq $NTEST` +do + name="Linked" + taille=${RANDOM}000 + res=`(/usr/bin/time -f "%U\t%M" java -jar Main.jar "Linked" $taille > /dev/null) 2>&1` + echo -e "$name\t$i\t$taille\t$res" +done + + +for i in `seq $NTEST` +do + name="Maillon" + taille=${RANDOM}000 + res=`(/usr/bin/time -f "%U\t%M" java -jar Main.jar "Maillon" $taille > /dev/null) 2>&1` + echo -e "$name\t$i\t$taille\t$res" done