/* pybind11/pybind11.h: Main header file of the C++11 python binding generator library Copyright (c) 2015 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant # pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning) # pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name # pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter # pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted #elif defined(__GNUG__) and !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-but-set-parameter" # pragma GCC diagnostic ignored "-Wunused-but-set-variable" # pragma GCC diagnostic ignored "-Wmissing-field-initializers" #endif #include "attr.h" NAMESPACE_BEGIN(pybind11) /// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object class cpp_function : public function { protected: /// Picks a suitable return value converter from cast.h template using return_value_caster = detail::type_caster::value, detail::void_type, typename detail::intrinsic_type::type>::type>; /// Picks a suitable argument value converter from cast.h template using arg_value_caster = detail::type_caster>; public: cpp_function() { } /// Vanilla function pointers template cpp_function(Return (*f)(Args...), const Extra&... extra) { auto rec = new detail::function_record(); rec->data = (void *) f; typedef arg_value_caster cast_in; typedef return_value_caster cast_out; /* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](detail::function_record *rec, handle pyArgs, handle parent) -> handle { cast_in args; /* Try to cast the function arguments into the C++ domain */ if (!args.load(pyArgs, true)) return PYBIND11_TRY_NEXT_OVERLOAD; /* Invoke call policy pre-call hook */ detail::process_attributes::precall(pyArgs); /* Do the call and convert the return value back into the Python domain */ handle result = cast_out::cast( args.template call((Return (*) (Args...)) rec->data), rec->policy, parent); /* Invoke call policy post-call hook */ detail::process_attributes::postcall(pyArgs, result); return result; }; /* Process any user-provided function attributes */ detail::process_attributes::init(extra..., rec); /* Generate a readable signature describing the function's arguments and return value types */ using detail::descr; PYBIND11_DESCR signature = cast_in::name() + detail::_(" -> ") + cast_out::name(); /* Register the function with Python from generic (non-templated) code */ initialize(rec, signature.text(), signature.types(), sizeof...(Args)); } /// Delegating helper constructor to deal with lambda functions template cpp_function(Func &&f, const Extra&... extra) { initialize(std::forward(f), (typename detail::remove_class::type::operator())>::type *) nullptr, extra...); } /// Delegating helper constructor to deal with class methods (non-const) template cpp_function( Return (Class::*f)(Arg...), const Extra&... extra) { initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*) (Class *, Arg...)) nullptr, extra...); } /// Delegating helper constructor to deal with class methods (const) template cpp_function( Return (Class::*f)(Arg...) const, const Extra&... extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*)(const Class *, Arg ...)) nullptr, extra...); } /// Return the function name object name() const { return attr("__name__"); } protected: /// Special internal constructor for functors, lambda functions, etc. template void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) { struct capture { typename std::remove_reference::type f; }; /* Store the function including any extra state it might have (e.g. a lambda capture object) */ auto rec = new detail::function_record(); rec->data = new capture { std::forward(f) }; /* Create a cleanup handler, but only if we have to (less generated code) */ if (!std::is_trivially_destructible::value) rec->free_data = [](void *ptr) { delete (capture *) ptr; }; else rec->free_data = operator delete; typedef arg_value_caster cast_in; typedef return_value_caster cast_out; /* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](detail::function_record *rec, handle pyArgs, handle parent) -> handle { cast_in args; /* Try to cast the function arguments into the C++ domain */ if (!args.load(pyArgs, true)) return PYBIND11_TRY_NEXT_OVERLOAD; /* Invoke call policy pre-call hook */ detail::process_attributes::precall(pyArgs); /* Do the call and convert the return value back into the Python domain */ handle result = cast_out::cast( args.template call(((capture *) rec->data)->f), rec->policy, parent); /* Invoke call policy post-call hook */ detail::process_attributes::postcall(pyArgs, result); return result; }; /* Process any user-provided function attributes */ detail::process_attributes::init(extra..., rec); /* Generate a readable signature describing the function's arguments and return value types */ using detail::descr; PYBIND11_DESCR signature = cast_in::name() + detail::_(" -> ") + cast_out::name(); /* Register the function with Python from generic (non-templated) code */ initialize(rec, signature.text(), signature.types(), sizeof...(Args)); } /// Register a function call with Python (generic non-templated code goes here) void initialize(detail::function_record *rec, const char *text, const std::type_info *const *types, int args) { /* Create copies of all referenced C-style strings */ rec->name = strdup(rec->name ? rec->name : ""); if (rec->doc) rec->doc = strdup(rec->doc); for (auto &a: rec->args) { if (a.name) a.name = strdup(a.name); if (a.descr) a.descr = strdup(a.descr); else if (a.value) a.descr = strdup(((std::string) ((object) handle(a.value).attr("__repr__")).call().str()).c_str()); } auto const ®istered_types = detail::get_internals().registered_types_cpp; /* Generate a proper function signature */ std::string signature; size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0; while (true) { char c = text[char_index++]; if (c == '\0') break; if (c == '{') { if (type_depth == 1 && arg_index < rec->args.size()) { signature += rec->args[arg_index].name; signature += " : "; } ++type_depth; } else if (c == '}') { --type_depth; if (type_depth == 1 && arg_index < rec->args.size()) { if (rec->args[arg_index].descr) { signature += " = "; signature += rec->args[arg_index].descr; } arg_index++; } } else if (c == '%') { const std::type_info *t = types[type_index++]; if (!t) pybind11_fail("Internal error while parsing type signature (1)"); auto it = registered_types.find(t); if (it != registered_types.end()) { signature += ((const detail::type_info *) it->second)->type->tp_name; } else { std::string tname(t->name()); detail::clean_type_id(tname); signature += tname; } } else { signature += c; } } if (type_depth != 0 || types[type_index] != nullptr) pybind11_fail("Internal error while parsing type signature (2)"); #if !defined(PYBIND11_CPP14) delete[] types; delete[] text; #endif #if PY_MAJOR_VERSION < 3 if (strcmp(rec->name, "__next__") == 0) { std::free(rec->name); rec->name = strdup("next"); } #endif if (!rec->args.empty() && (int) rec->args.size() != args) pybind11_fail( "cpp_function(): function \"" + std::string(rec->name) + "\" takes " + std::to_string(args) + " arguments, but " + std::to_string(rec->args.size()) + " pybind11::arg entries were specified!"); rec->is_constructor = !strcmp(rec->name, "__init__"); rec->signature = strdup(signature.c_str()); rec->args.shrink_to_fit(); #if PY_MAJOR_VERSION < 3 if (rec->sibling && PyMethod_Check(rec->sibling.ptr())) rec->sibling = PyMethod_GET_FUNCTION(rec->sibling.ptr()); #endif detail::function_record *chain = nullptr, *chain_start = rec; if (rec->sibling && PyCFunction_Check(rec->sibling.ptr())) { capsule rec_capsule(PyCFunction_GetSelf(rec->sibling.ptr()), true); chain = (detail::function_record *) rec_capsule; /* Never append a method to an overload chain of a parent class; instead, hide the parent's overloads in this case */ if (chain->class_ != rec->class_) chain = nullptr; } if (!chain) { /* No existing overload was found, create a new function object */ rec->def = new PyMethodDef(); memset(rec->def, 0, sizeof(PyMethodDef)); rec->def->ml_name = rec->name; rec->def->ml_meth = reinterpret_cast(*dispatcher); rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS; capsule rec_capsule(rec, [](PyObject *o) { destruct((detail::function_record *) PyCapsule_GetPointer(o, nullptr)); }); m_ptr = PyCFunction_New(rec->def, rec_capsule.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); } else { /* Append at the end of the overload chain */ m_ptr = rec->sibling.ptr(); inc_ref(); chain_start = chain; while (chain->next) chain = chain->next; chain->next = rec; } std::string signatures; int index = 0; /* Create a nice pydoc rec including all signatures and docstrings of the functions in the overload chain */ for (auto it = chain_start; it != nullptr; it = it->next) { if (chain) signatures += std::to_string(++index) + ". "; signatures += "Signature : "; signatures += it->signature; signatures += "\n"; if (it->doc && strlen(it->doc) > 0) { signatures += "\n"; signatures += it->doc; signatures += "\n"; } if (it->next) signatures += "\n"; } /* Install docstring */ PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; if (func->m_ml->ml_doc) std::free((char *) func->m_ml->ml_doc); func->m_ml->ml_doc = strdup(signatures.c_str()); if (rec->class_) { m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->class_.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object"); Py_DECREF(func); } } /// When a cpp_function is GCed, release any memory allocated by pybind11 static void destruct(detail::function_record *rec) { while (rec) { detail::function_record *next = rec->next; if (rec->free_data) rec->free_data(rec->data); std::free((char *) rec->name); std::free((char *) rec->doc); std::free((char *) rec->signature); for (auto &arg: rec->args) { std::free((char *) arg.name); std::free((char *) arg.descr); arg.value.dec_ref(); } if (rec->def) { std::free((char *) rec->def->ml_doc); delete rec->def; } delete rec; rec = next; } } /// Main dispatch logic for calls to functions bound using pybind11 static PyObject *dispatcher(PyObject *self, PyObject *args, PyObject *kwargs) { /* Iterator over the list of potentially admissible overloads */ detail::function_record *overloads = (detail::function_record *) PyCapsule_GetPointer(self, nullptr), *it = overloads; /* Need to know how many arguments + keyword arguments there are to pick the right overload */ int nargs = (int) PyTuple_Size(args), nkwargs = kwargs ? (int) PyDict_Size(kwargs) : 0; handle parent = nargs > 0 ? PyTuple_GetItem(args, 0) : nullptr, result = PYBIND11_TRY_NEXT_OVERLOAD; try { for (; it != nullptr; it = it->next) { tuple args_(args, true); int kwargs_consumed = 0; /* For each overload: 1. If the required list of arguments is longer than the actually provided amount, create a copy of the argument list and fill in any available keyword/default arguments. 2. Ensure that all keyword arguments were "consumed" 3. Call the function call dispatcher (function_record::impl) */ if (nargs < (int) it->args.size()) { args_ = tuple(it->args.size()); for (int i = 0; i < nargs; ++i) { handle item = PyTuple_GET_ITEM(args, i); PyTuple_SET_ITEM(args_.ptr(), i, item.inc_ref().ptr()); } int arg_ctr = 0; for (auto const &it2 : it->args) { int index = arg_ctr++; if (PyTuple_GET_ITEM(args_.ptr(), index)) continue; handle value; if (kwargs) value = PyDict_GetItemString(kwargs, it2.name); if (value) kwargs_consumed++; else if (it2.value) value = it2.value; if (value) { PyTuple_SET_ITEM(args_.ptr(), index, value.inc_ref().ptr()); } else { kwargs_consumed = -1; /* definite failure */ break; } } } if (kwargs_consumed == nkwargs) result = it->impl(it, args_, parent); if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break; } } catch (const error_already_set &) { return nullptr; } catch (const index_error &e) { PyErr_SetString(PyExc_IndexError, e.what()); return nullptr; } catch (const stop_iteration &e) { PyErr_SetString(PyExc_StopIteration, e.what()); return nullptr; } catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return nullptr; } catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return nullptr; } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return nullptr; } catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return nullptr; } catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return nullptr; } catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return nullptr; } catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return nullptr; } catch (...) { PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!"); return nullptr; } if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { std::string msg = "Incompatible function arguments. The " "following argument types are supported:\n"; int ctr = 0; for (detail::function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { msg += " "+ std::to_string(++ctr) + ". "; msg += it2->signature; msg += "\n"; } PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else if (!result) { std::string msg = "Unable to convert function return value to a " "Python type! The signature was\n\t"; msg += it->signature; PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else { if (overloads->is_constructor) { /* When a construtor ran successfully, the corresponding holder type (e.g. std::unique_ptr) must still be initialized. */ PyObject *inst = PyTuple_GetItem(args, 0); auto tinfo = detail::get_type_info(Py_TYPE(inst)); tinfo->init_holder(inst, nullptr); } return result.ptr(); } } }; /// Wrapper for Python extension modules class module : public object { public: PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check) module(const char *name, const char *doc = nullptr) { #if PY_MAJOR_VERSION >= 3 PyModuleDef *def = new PyModuleDef(); memset(def, 0, sizeof(PyModuleDef)); def->m_name = name; def->m_doc = doc; def->m_size = -1; Py_INCREF(def); m_ptr = PyModule_Create(def); #else m_ptr = Py_InitModule3(name, nullptr, doc); #endif if (m_ptr == nullptr) pybind11_fail("Internal error in module::module()"); inc_ref(); } template module &def(const char *name_, Func &&f, const Extra& ... extra) { cpp_function func(std::forward(f), name(name_), sibling((handle) attr(name_)), extra...); /* PyModule_AddObject steals a reference to 'func' */ PyModule_AddObject(ptr(), name_, func.inc_ref().ptr()); return *this; } module def_submodule(const char *name, const char *doc = nullptr) { std::string full_name = std::string(PyModule_GetName(m_ptr)) + std::string(".") + std::string(name); module result(PyImport_AddModule(full_name.c_str()), true); if (doc) result.attr("__doc__") = pybind11::str(doc); attr(name) = result; return result; } static module import(const char *name) { PyObject *obj = PyImport_ImportModule(name); if (!obj) pybind11_fail("Module \"" + std::string(name) + "\" not found!"); return module(obj, false); } }; NAMESPACE_BEGIN(detail) /// Generic support for creating new Python heap types class generic_type : public object { template friend class class_; public: PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) protected: void initialize(type_record *rec) { if (rec->base_type) { if (rec->base_handle) pybind11_fail("generic_type: specified base type multiple times!"); rec->base_handle = detail::get_type_handle(*(rec->base_type)); if (!rec->base_handle) { std::string tname(rec->base_type->name()); detail::clean_type_id(tname); pybind11_fail("generic_type: type \"" + std::string(rec->name) + "\" referenced unknown base type \"" + tname + "\""); } } object type_holder(PyType_Type.tp_alloc(&PyType_Type, 0), false); object name(PYBIND11_FROM_STRING(rec->name), false); auto type = (PyHeapTypeObject*) type_holder.ptr(); if (!type_holder || !name) pybind11_fail("generic_type: unable to create type object!"); /* Register supplemental type information in C++ dict */ auto &internals = get_internals(); detail::type_info *tinfo = new detail::type_info(); tinfo->type = (PyTypeObject *) type; tinfo->type_size = rec->type_size; tinfo->init_holder = rec->init_holder; internals.registered_types_cpp[rec->type] = tinfo; internals.registered_types_py[type] = tinfo; auto scope_module = (object) rec->scope.attr("__module__"); if (!scope_module) scope_module = (object) rec->scope.attr("__name__"); std::string full_name = (scope_module ? ((std::string) scope_module.str() + "." + rec->name) : std::string(rec->name)); /* Basic type attributes */ type->ht_type.tp_name = strdup(full_name.c_str()); type->ht_type.tp_basicsize = rec->instance_size; type->ht_type.tp_base = (PyTypeObject *) rec->base_handle.ptr(); rec->base_handle.inc_ref(); #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 /* Qualified names for Python >= 3.3 */ auto scope_qualname = (object) rec->scope.attr("__qualname__"); if (scope_qualname) { type->ht_qualname = PyUnicode_FromFormat( "%U.%U", scope_qualname.ptr(), name.ptr()); } else { type->ht_qualname = name.ptr(); name.inc_ref(); } #endif type->ht_name = name.release().ptr(); /* Supported protocols */ type->ht_type.tp_as_number = &type->as_number; type->ht_type.tp_as_sequence = &type->as_sequence; type->ht_type.tp_as_mapping = &type->as_mapping; /* Supported elementary operations */ type->ht_type.tp_init = (initproc) init; type->ht_type.tp_new = (newfunc) new_instance; type->ht_type.tp_dealloc = rec->dealloc; /* Support weak references (needed for the keep_alive feature) */ type->ht_type.tp_weaklistoffset = offsetof(instance_essentials, weakrefs); /* Flags */ type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE; #if PY_MAJOR_VERSION < 3 type->ht_type.tp_flags |= Py_TPFLAGS_CHECKTYPES; #endif type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC; if (rec->doc) { /* Allocate memory for docstring (using PyObject_MALLOC, since Python will free this later on) */ size_t size = strlen(rec->doc) + 1; type->ht_type.tp_doc = (char *) PyObject_MALLOC(size); memcpy((void *) type->ht_type.tp_doc, rec->doc, size); } if (PyType_Ready(&type->ht_type) < 0) pybind11_fail("generic_type: PyType_Ready failed!"); m_ptr = type_holder.ptr(); if (scope_module) // Needed by pydoc attr("__module__") = scope_module; /* Register type with the parent scope */ rec->scope.attr(handle(type->ht_name)) = *this; type_holder.release(); } /// Allocate a metaclass on demand (for static properties) handle metaclass() { auto &ht_type = ((PyHeapTypeObject *) m_ptr)->ht_type; auto &ob_type = PYBIND11_OB_TYPE(ht_type); if (ob_type == &PyType_Type) { std::string name_ = std::string(ht_type.tp_name) + "__Meta"; object type_holder(PyType_Type.tp_alloc(&PyType_Type, 0), false); object name(PYBIND11_FROM_STRING(name_.c_str()), false); if (!type_holder || !name) pybind11_fail("generic_type::metaclass(): unable to create type object!"); auto type = (PyHeapTypeObject*) type_holder.ptr(); type->ht_name = name.release().ptr(); #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 /* Qualified names for Python >= 3.3 */ type->ht_qualname = PyUnicode_FromFormat( "%U__Meta", ((object) attr("__qualname__")).ptr()); #endif type->ht_type.tp_name = strdup(name_.c_str()); type->ht_type.tp_base = ob_type; type->ht_type.tp_flags |= (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE) & ~Py_TPFLAGS_HAVE_GC; if (PyType_Ready(&type->ht_type) < 0) pybind11_fail("generic_type::metaclass(): PyType_Ready failed!"); ob_type = (PyTypeObject *) type_holder.release().ptr(); } return handle((PyObject *) ob_type); } static int init(void *self, PyObject *, PyObject *) { std::string msg = std::string(Py_TYPE(self)->tp_name) + ": No constructor defined!"; PyErr_SetString(PyExc_TypeError, msg.c_str()); return -1; } static PyObject *new_instance(PyTypeObject *type, PyObject *, PyObject *) { instance *self = (instance *) PyType_GenericAlloc((PyTypeObject *) type, 0); auto tinfo = detail::get_type_info(type); self->value = ::operator new(tinfo->type_size); self->owned = true; self->parent = nullptr; self->constructed = false; detail::get_internals().registered_instances[self->value] = (PyObject *) self; return (PyObject *) self; } static void dealloc(instance *self) { if (self->value) { bool dont_cache = self->parent && ((instance *) self->parent)->value == self->value; if (!dont_cache) { // avoid an issue with internal references matching their parent's address auto ®istered_instances = detail::get_internals().registered_instances; auto it = registered_instances.find(self->value); if (it == registered_instances.end()) pybind11_fail("generic_type::dealloc(): Tried to deallocate unregistered instance!"); registered_instances.erase(it); } Py_XDECREF(self->parent); if (self->weakrefs) PyObject_ClearWeakRefs((PyObject *) self); } Py_TYPE(self)->tp_free((PyObject*) self); } void install_buffer_funcs( buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; type->ht_type.tp_as_buffer = &type->as_buffer; #if PY_MAJOR_VERSION < 3 type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif type->as_buffer.bf_getbuffer = getbuffer; type->as_buffer.bf_releasebuffer = releasebuffer; auto tinfo = detail::get_type_info(&type->ht_type); tinfo->get_buffer = get_buffer; tinfo->get_buffer_data = get_buffer_data; } static int getbuffer(PyObject *obj, Py_buffer *view, int flags) { auto tinfo = detail::get_type_info(Py_TYPE(obj)); if (view == nullptr || obj == nullptr || !tinfo || !tinfo->get_buffer) { PyErr_SetString(PyExc_BufferError, "generic_type::getbuffer(): Internal error"); return -1; } memset(view, 0, sizeof(Py_buffer)); buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data); view->obj = obj; view->ndim = 1; view->internal = info; view->buf = info->ptr; view->itemsize = info->itemsize; view->len = view->itemsize; for (auto s : info->shape) view->len *= s; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) view->format = const_cast(info->format.c_str()); if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) { view->ndim = info->ndim; view->strides = (ssize_t *) &info->strides[0]; view->shape = (ssize_t *) &info->shape[0]; } Py_INCREF(view->obj); return 0; } static void releasebuffer(PyObject *, Py_buffer *view) { delete (buffer_info *) view->internal; } }; NAMESPACE_END(detail) template > class class_ : public detail::generic_type { public: typedef detail::instance instance_type; PYBIND11_OBJECT(class_, detail::generic_type, PyType_Check) template class_(handle scope, const char *name, const Extra &... extra) { detail::type_record record; record.scope = scope; record.name = name; record.type = &typeid(type); record.type_size = sizeof(type); record.instance_size = sizeof(instance_type); record.init_holder = init_holder; record.dealloc = dealloc; /* Process optional arguments, if any */ detail::process_attributes::init(extra..., &record); detail::generic_type::initialize(&record); } template class_ &def(const char *name_, Func&& f, const Extra&... extra) { cpp_function cf(std::forward(f), name(name_), sibling(attr(name_)), is_method(*this), extra...); attr(cf.name()) = cf; return *this; } template class_ & def_static(const char *name_, Func f, const Extra&... extra) { cpp_function cf(std::forward(f), name(name_), sibling(attr(name_)), extra...); attr(cf.name()) = cf; return *this; } template class_ &def(const detail::op_ &op, const Extra&... extra) { op.template execute(*this, extra...); return *this; } template class_ & def_cast(const detail::op_ &op, const Extra&... extra) { op.template execute_cast(*this, extra...); return *this; } template class_ &def(const detail::init &init, const Extra&... extra) { init.template execute(*this, extra...); return *this; } template class_& def_buffer(Func &&func) { struct capture { Func func; }; capture *ptr = new capture { std::forward(func) }; install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { detail::type_caster caster; if (!caster.load(obj, false)) return nullptr; return new buffer_info(((capture *) ptr)->func(caster)); }, ptr); return *this; } template class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, return_value_policy::reference_internal, is_method(*this), extra...), fset([pm](C &c, const D &value) { c.*pm = value; }, is_method(*this), extra...); def_property(name, fget, fset); return *this; } template class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, return_value_policy::reference_internal, is_method(*this), extra...); def_property_readonly(name, fget); return *this; } template class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, return_value_policy::reference_internal, extra...), fset([pm](object, const D &value) { *pm = value; }, extra...); def_property_static(name, fget, fset); return *this; } template class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, return_value_policy::reference_internal, extra...); def_property_readonly_static(name, fget); return *this; } class_ &def_property_readonly(const char *name, const cpp_function &fget, const char *doc = nullptr) { def_property(name, fget, cpp_function(), doc); return *this; } class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const char *doc = nullptr) { def_property_static(name, fget, cpp_function(), doc); return *this; } class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const char *doc = nullptr) { object doc_obj = doc ? pybind11::str(doc) : (object) fget.attr("__doc__"); object property( PyObject_CallFunctionObjArgs((PyObject *) &PyProperty_Type, fget.ptr() ? fget.ptr() : Py_None, fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr(), nullptr), false); attr(name) = property; return *this; } class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const char *doc = nullptr) { object doc_obj = doc ? pybind11::str(doc) : (object) fget.attr("__doc__"); object property( PyObject_CallFunctionObjArgs((PyObject *) &PyProperty_Type, fget.ptr() ? fget.ptr() : Py_None, fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr(), nullptr), false); metaclass().attr(name) = property; return *this; } template class_ alias() { auto &instances = pybind11::detail::get_internals().registered_types_cpp; instances[&typeid(target)] = instances[&typeid(type)]; return *this; } private: /// Initialize holder object, variant 1: object derives from enable_shared_from_this template static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const std::enable_shared_from_this * /* dummy */) { try { new (&inst->holder) holder_type(inst->value->shared_from_this()); } catch (const std::bad_weak_ptr &) { new (&inst->holder) holder_type(inst->value); } } /// Initialize holder object, variant 2: try to construct from existing holder object, if possible template ::value, int>::type = 0> static void init_holder_helper(instance_type *inst, const holder_type *holder_ptr, const void * /* dummy */) { if (holder_ptr) new (&inst->holder) holder_type(*holder_ptr); else new (&inst->holder) holder_type(inst->value); } /// Initialize holder object, variant 3: holder is not copy constructible (e.g. unique_ptr), always initialize from raw pointer template ::value, int>::type = 0> static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const void * /* dummy */) { new (&inst->holder) holder_type(inst->value); } /// Initialize holder object of an instance, possibly given a pointer to an existing holder static void init_holder(PyObject *inst_, const void *holder_ptr) { auto inst = (instance_type *) inst_; init_holder_helper(inst, (const holder_type *) holder_ptr, inst->value); inst->constructed = true; } static void dealloc(PyObject *inst_) { instance_type *inst = (instance_type *) inst_; if (inst->owned) { if (inst->constructed) inst->holder.~holder_type(); else ::operator delete(inst->value); } generic_type::dealloc((detail::instance *) inst); } }; /// Binds C++ enumerations and enumeration classes to Python template class enum_ : public class_ { public: template enum_(const handle &scope, const char *name, const Extra&... extra) : class_(scope, name, extra...), m_parent(scope) { auto entries = new std::unordered_map(); this->def("__repr__", [name, entries](Type value) -> std::string { auto it = entries->find((int) value); return std::string(name) + "." + ((it == entries->end()) ? std::string("???") : std::string(it->second)); }); this->def("__init__", [](Type& value, int i) { value = (Type) i; }); this->def("__int__", [](Type value) { return (int) value; }); this->def("__eq__", [](const Type &value, Type value2) { return value == value2; }); this->def("__ne__", [](const Type &value, Type value2) { return value != value2; }); this->def("__hash__", [](const Type &value) { return (int) value; }); m_entries = entries; } /// Export enumeration entries into the parent scope void export_values() { PyObject *dict = ((PyTypeObject *) this->m_ptr)->tp_dict; PyObject *key, *value; ssize_t pos = 0; while (PyDict_Next(dict, &pos, &key, &value)) if (PyObject_IsInstance(value, this->m_ptr)) m_parent.attr(key) = value; } /// Add an enumeration entry enum_& value(char const* name, Type value) { this->attr(name) = pybind11::cast(value, return_value_policy::copy); (*m_entries)[(int) value] = name; return *this; } private: std::unordered_map *m_entries; handle m_parent; }; NAMESPACE_BEGIN(detail) template struct init { template void execute(pybind11::class_ &class_, const Extra&... extra) const { /// Function which calls a specific C++ in-place constructor class_.def("__init__", [](Base *instance, Args... args) { new (instance) Base(args...); }, extra...); } }; PYBIND11_NOINLINE inline void keep_alive_impl(int Nurse, int Patient, handle args, handle ret) { /* Clever approach based on weak references taken from Boost.Python */ handle nurse (Nurse > 0 ? PyTuple_GetItem(args.ptr(), Nurse - 1) : ret.ptr()); handle patient(Patient > 0 ? PyTuple_GetItem(args.ptr(), Patient - 1) : ret.ptr()); if (!nurse || !patient) pybind11_fail("Could not activate keep_alive!"); cpp_function disable_lifesupport( [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); }); weakref wr(nurse, disable_lifesupport); patient.inc_ref(); /* reference patient and leak the weak reference */ (void) wr.release(); } NAMESPACE_END(detail) template detail::init init() { return detail::init(); }; template void implicitly_convertible() { auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { if (!detail::type_caster().load(obj, false)) return nullptr; tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) PyErr_Clear(); return result; }; auto & registered_types = detail::get_internals().registered_types_cpp; auto it = registered_types.find(&typeid(OutputType)); if (it == registered_types.end()) pybind11_fail("implicitly_convertible: Unable to find type " + type_id()); ((detail::type_info *) it->second)->implicit_conversions.push_back(implicit_caster); } #if defined(WITH_THREAD) inline void init_threading() { PyEval_InitThreads(); } class gil_scoped_acquire { PyGILState_STATE state; public: inline gil_scoped_acquire() { state = PyGILState_Ensure(); } inline ~gil_scoped_acquire() { PyGILState_Release(state); } }; class gil_scoped_release { PyThreadState *state; public: inline gil_scoped_release() { state = PyEval_SaveThread(); } inline ~gil_scoped_release() { PyEval_RestoreThread(state); } }; #endif inline function get_overload(const void *this_ptr, const char *name) { handle py_object = detail::get_object_handle(this_ptr); if (!py_object) return function(); handle type = py_object.get_type(); auto key = std::make_pair(type.ptr(), name); /* Cache functions that aren't overloaded in python to avoid many costly dictionary lookups in Python */ auto &cache = detail::get_internals().inactive_overload_cache; if (cache.find(key) != cache.end()) return function(); function overload = (function) py_object.attr(name); if (overload.is_cpp_function()) { cache.insert(key); return function(); } PyFrameObject *frame = PyThreadState_Get()->frame; pybind11::str caller = pybind11::handle(frame->f_code->co_name).str(); if ((std::string) caller == name) return function(); return overload; } #define PYBIND11_OVERLOAD_INT(ret_type, class_name, name, ...) { \ pybind11::gil_scoped_acquire gil; \ pybind11::function overload = pybind11::get_overload(this, #name); \ if (overload) \ return overload.call(__VA_ARGS__).cast(); } #define PYBIND11_OVERLOAD(ret_type, class_name, name, ...) \ PYBIND11_OVERLOAD_INT(ret_type, class_name, name, __VA_ARGS__) \ return class_name::name(__VA_ARGS__) #define PYBIND11_OVERLOAD_PURE(ret_type, class_name, name, ...) \ PYBIND11_OVERLOAD_INT(ret_type, class_name, name, __VA_ARGS__) \ pybind11::pybind11_fail("Tried to call pure virtual function \"" #name "\""); NAMESPACE_END(pybind11) #if defined(_MSC_VER) # pragma warning(pop) #elif defined(__GNUG__) and !defined(__clang__) # pragma GCC diagnostic pop #endif